Dependent Samples:
 Matched Pairs \& TI

Tips \& Notations:

1. Key Words: Before \& After.
2. Preparation:
(a) Enter data from before group in L_{1}.
(b) Enter matched data from after group in L_{2}.
(c) Highlight L_{3} and then do $L_{1}-L_{2}$ followed by ENTER.
3. Mean of the differenced data: \bar{d}
4. Standard Deviation of the differenced data: s_{d}
5. Population mean difference of the matched-pairs data: μ_{d}

Basic Statistics Computations For $\bar{d} \& s_{d}$:

1. How to Find \bar{d} :
2. How to Find s_{d} :

$$
\begin{array}{r}
\text { STAT }>\mathrm{CALC}>1 \text {-Var STATS }>L_{3}>\text { ENTER, } \bar{d}=\bar{x} \\
\text { STAT }>\mathrm{CALC}>1 \text {-Var STATS }>L_{3}>\text { ENTER, } s_{d}=s_{x}
\end{array}
$$

Confidence Interval For μ_{d} :

1. How to Write the Final Answer:
2. Confidence Interval Using TI:

$$
<\mu_{d}<
$$

TInterval > Inpt: Data, List: L_{3}, and Freq:1.

Hypothesis Testing For μ_{d} :

$$
\begin{aligned}
& H_{0}: \mu_{d}=0 \\
& H_{1}: \begin{cases}\mu_{d} \neq 0 & \text { Two - Tail Test } \\
\mu_{d}>0 & \text { Right - Tail Test } \\
\mu_{d}<0 & \text { Left - Tail Test }\end{cases}
\end{aligned}
$$

1. Finding Critical Values Using TI:

PRGM $>$ TVAL $>$ ENTER (Twice)

$$
d f=n-1
$$

STAT $>$ TESTS $>$ TTest

Guided Example:

10 different athletes were randomly selected to join a 3-month diet program to gain weight. The results are given in the following table.

Before Diet:	185	170	190	200	180	195	175	200	215	220
After Diet:	200	180	190	195	195	180	200	225	220	215

After entering these data in L_{1} and L_{2}, followed by the difference in L_{3}, we should have the following:

Before Diet $\longrightarrow L_{1}$	185	170	190	200	180	195	175	200	215	220
After Diet $\longrightarrow L_{2}$	200	180	190	195	195	180	200	225	220	215
Difference $\longrightarrow L_{3}$	-15	-10	0	5	-15	15	-25	-25	-5	5

1. Using L_{3}, find \bar{d}. Round to the nearest whole number. Answer: $\bar{d}=-7$
2. Using L_{3}, find S_{d}. Round to the nearest whole number. Answer: $S_{d}=13$
3. Using these results, find the 98% confidence interval for the mean of all differences μ_{d}. Round to the one decimal place value.
Answer: $\quad-18.6<\mu_{d}<4.6$
4. test the claim at $\alpha=.01$ that this diet plan is effective to help athletes to gain weight. Answer:
$H_{0}: \mu_{d} \geq 0$
$H_{1}: \mu_{d}<0$, LTT, Claim
5. Using TVAL andT-Test, find C.V., C.T.S., and $\mathrm{P}-$ value.

Answer: C.V. $=-2.821$, C.T.S. $=-1.703$, and $\mathrm{p}-$ value $=.061$
6. Conclusion: C.T.S. is in NCR. P-Value $>\alpha . H_{0}$ is valid. H_{1} is invalid. Reject the claim.
7. Suggest a couple of values for α that reverses the conclusion.

Answer: Pick any value such that $\mathrm{p}-$ value $\leq \alpha$ such as $\alpha=0.08$, or $\alpha=0.1$.

